Submodular Point Processes
نویسندگان
چکیده
We introduce a class of discrete point processes that we call the Submodular Point Processes (SPPs). These processes are characterized via a submodular (or supermodular) function, and naturally model notions of information, coverage and diversity, as well as cooperation. Unlike Log-submodular and Log-supermodular distributions (Log-SPPs) such as determinantal point processes (DPPs), SPPs are themselves submodular (or supermodular). In this paper, we analyze the computational complexity of probabilistic inference in SPPs. We show that computing the partition function for SPPs (and Log-SPPs), requires exponential complexity in the worst case, and also provide algorithms which approximate SPPs up to polynomial factors. Moreover, for several subclasses of interesting submodular functions that occur in applications, we show how we can provide efficient closed form expressions for the partition functions, and thereby marginals and conditional distributions. Finally, we argue how SPPs complement existing Log-SPP distributions, and are a natural model for several applications.
منابع مشابه
Submodular Point Processes with Applications to Machine learning
We introduce a class of discrete point processes that we call the Submodular Point Processes (SPPs). These processes are characterized via a submodular (or supermodular) function, and naturally model notions of information, coverage and diversity, as well as cooperation. Unlike Log-submodular and Log-supermodular distributions (Log-SPPs) such as determinantal point processes (DPPs), SPPs are th...
متن کاملSubmodular Point Processes with Applications to Machine Learning: Extended Version
We introduce a class of discrete point processes that we call the Submodular Point Processes (SPPs). These processes are characterized via a submodular (or supermodular) function, and naturally model notions of information, coverage and diversity, as well as cooperation. Unlike Log-submodular and Log-supermodular distributions (Log-SPPs) such as determinantal point processes (DPPs), SPPs are th...
متن کاملFast Mixing for Discrete Point Processes
We investigate the systematic mechanism for designing fast mixing Markov chain Monte Carlo algorithms to sample from discrete point processes under the Dobrushin uniqueness condition for Gibbs measures. Discrete point processes are defined as probability distributions μ(S) ∝ exp(βf(S)) over all subsets S ∈ 2 of a finite set V through a bounded set function f : 2 → R and a parameter β > 0. A sub...
متن کاملFrom MAP to Marginals: Variational Inference in Bayesian Submodular Models
Submodular optimization has found many applications in machine learning andbeyond. We carry out the first systematic investigation of inference in probabilis-tic models defined through submodular functions, generalizing regular pairwiseMRFs and Determinantal Point Processes. In particular, we present L-FIELD, avariational approach to general log-submodular and log-supermodul...
متن کاملSome Results about the Contractions and the Pendant Pairs of a Submodular System
Submodularity is an important property of set functions with deep theoretical results and various applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization. Nowadays submodular functions optimization has been attracted by many researchers. Pendant pairs of a symmetric...
متن کامل